Geometry Vocabular	y Quiz on Chapter 1	Name:		
Drawing a diagram will help!!!!		Date:	Period:	
1.1/1.2 Points Lines	and Planes			
Point:	A <i>point</i> is a location and is named by a			
Line:	A <i>line</i> is an infinite set of points and is named by a			
	or by			
Plane:	A <i>plane</i> is an infinite set of points and is named by a			
	or			
Point, line, and plan	e are T	hey are used in defir	nitions of other terms.	
<i>Equidistant</i> – Point:	Point <i>P</i> is <i>equidistant</i> from points <i>X</i> and <i>Y</i> if			
	There are	points equ	idistant from <i>X</i> and <i>Y</i> .	
Space:	Space is the set of			
Collinear Points:	Collinear Points are all in			
Coplanar Points:	Coplanar Points are all in			
Intersection:	The <i>intersection</i> of two figures is the set of points that are			
1.3 Segments, Rays,	and Distance			
Between:	Point <i>J</i> is <i>between</i> point <i>L</i> and point <i>M</i> if			
Segment:	Segment AC, denoted _	, consists	of <i>endpoints</i> A and C	
	and			
Ray:	Ray AC, denoted	, consists of th	e initial point A	
	and			
Opposite Rays:	\overrightarrow{AC} and \overrightarrow{AB} are <i>oppo</i>	osite rays if		

Length:	The <i>let</i>	<i>ngth</i> of \overline{XY} , denoted, is thebetween	
	point X and point Y. If the two points are on a number line, this		
	length can be found by		
Postulate or Axiom:	A <i>postulate</i> or <i>axiom</i> is a		
Theorem:	A <i>theorem</i> is a		
Segment Addition Po (Diagram required)	stulate:		
Congruent:	Two or more objects are <i>congruent</i> if they are the		
Congruent Segments:		Congruent segments have	
Midpoint of a Segment:		The <i>midpoint of a segment</i> is the point that	
		If <i>M</i> is the <i>midpoint</i> of \overline{XY} , then	
Bisector of a Segment:		A <i>bisector of a segment</i> is a line, segment, ray, or plane	
		that	
<i>Midpoint Theorem:</i> (Diagram Required)		If <i>B</i> is the midpoint of \overline{AC} , then	
1.4 Angles			
Angle:	An <i>angle</i> is a figure formed by		
Vertex of an Angle:	The <i>vertex of an angle</i> is the		
Measure of an Angle	: The n	<i>neasure of an angle</i> is the amount of between	
	the sides of the angle. Angles can be measured in		
Congruent Angles:	: Congruent angles have If $m \angle A = m \angle B$, then		

Bisector of an Angle: The bisector of an angle is the ray, segment, line, or plane that

Angle Addition Postulate: (Diagrams required)

(1) If *P* is in the interior of $\angle RST$, then ______.

(2) If $\angle AOC$ is a straight angle and B is _____,

then ______.

Linear Pair:The second part of the Angle Addition Postulate is sometimes
expressed as the Linear Pair Postulate. If two angles from a

linear pair, they are ______.

.